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1. INTRODUCTION

Let r p = {z: 11 - z2
1 = p }, p> 1, denote a lemniscate containing [ -1, 1]

and let D p denote the interior of r p • Let A(Dp) denote the class of
functions holomorphic in the domain D p and let the maximum norm on
[ -1, 1] be denoted by 11'11. Suppose that S(x) = (Sm,nf)(x) denotes the
complete spline interpolant of degree 2m - 1 to f on [-1, 1] with respect
to any given knots Yl<Y2< ... <Yn in (-1,1). More precisely, S(X)E
C2m

-
2

[ -1,1], and

S(y')=f(y'),

S(})( ± 1) = f(})( ± 1),

V= 1, 2'00" n,

j=o, 1'00" m-1.

(1.1)

(1.2)

In connection with Professor Schoenberg's 1968 conjecture regarding the
convergence of the spline interpolant (Sm,nf)(x) as m ~ 00, it was recently
proved [2] that iff E A(Dp), p> 1, then the spline interpolant converges to
f geometrically on [-1, 1].
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The purpose of this note is to examine the sensitivity of the above results
to different types of interpolatory conditions. A close examination of the
proof of the result in [2J shows that their result prevails even when their
condition is replaced by

v= 1, 2, ..., n,

when -1 < Xl < ... < X n < 1 are any n distinct points, not necessarily the
same as the knots {yJ 7.

In view of this, we propose to consider the foHowing

PROBLEM. Let m ~ 1, d~O be integers and let {Yi}7,

-1<Yl<Yl< ... <Yn<l

be n knots. Let Y'M = Y'M(Yt> ..., Yl) denote the class of splines of degree
M:=2m+d-1 with knots {Yi}7 each taken with multiplicity {f3J'{,
Pi ~ 1. For a given positive integer I, let

be given, where each Xi is taken with multiplicity ai' Ct. i ~ 1 (i = 1,..., I). We
require that

I n

L Ct. i= L Pi'
i~1 i=1

We consider the interpolation problem of finding S(x) E Y'M satisfying

and

S(V)(1) =pV)(1)

S(v)( -1) = j(v)( -1),

v=0,1,...,IX i -1;i=1,...,I.

v=O,1, ,m+d-1,

v =0,1, , m-1.

(1.6)

The problem is to find the convergence properties of S(x) E !I'M, M =
2m +d-1, when m -+ 00.

Remark. For large enough values of m, the interlacing conditions of
Schoenberg and Whitney are satisfied and so the uniqueness and existence
of S(X)EY'M satisfying (1.6) and (1.7) follows.

We shall prove
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THEOREM 1. LetfEA(Dp ), p>1 and let Sm(X)EY'M(Yl"'Yn) satisfy
(1.6) and (1.7) , where M = 2m + d - 1. Then

lim IIF- Smfl1 1/m~ 1/p.
m--> 00

An additional, more precise statement will be given in Section 4.

2. PRELIMINARIES

In order to examine the above problems, we shall recall some of the
notations and results of [2]. There, the method was based on the boun­
dary conditions. The main tool in that study was the B-spline

(2.1 )

of degree 2m - 1 with a simple knot at Y and m-fold knots at ± 1, nor­
malized to have integral one. We shall need the following recursion formula
for Km(x, y):

m { (2m-2) (1_X
2
)m-l (1-XY)

Km(x, y)= m-1 (m-1) m-1 -4- 1- y 2

(x- yf }
- (1- y2) Km_1(x, y) .

In particular,

(
2m -1) (1- X

2
)m-l

Km(x) := Km(x, x) = m m -1 -4-

Following [2], we set

and

1
T 00 (x, y) =--.

l-xy

We shall prove the following

(2.2)

(2.3 )

(2.4 )

(2.5)
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LEMMA 1. We have the following identity

T oo(X, y)- Tm(x, y)

= 1 [(X_ y )2 +6p(1+4P)1/2f1 vm(1+4PV)-S/2dV] (2.6)
2m(1-xy) (1-xy)2 0

where

(2.7)

Proof The proof follows from the known relation [2J,

on writing

T 00 (x, y)- Tm(x, y)

=mToo(x, y) (vm- 1[(1- 2~) (1 +4p)1/2(1 +4PV)-l/2] dv

=mToo(x, y) [( vm- 1{1-(1 +4p)l/2(1 +4pV)-1/2} dv

= mT00 (x, y) [fal vm- l{1- (1 + 4p )1/2(1 + 4pv)-l/2} dv

+_1_f1 vm- 1(1 +4p)1/2(1 +4PV)-1/2dV].
2m 0

Using integration by parts on the first integral and simplifying, we get
(2.6).

Remark 2. Formula (2.6) shows that T 00 (x, y) ~ Tm(x, y) and that

1 1 (X_y)2 -2
-1_.-- Tm(x, y) =-2 (1 )3 + O(m ). (2.9)-xy m -xy

From (2.6) and (2.7) we see that (2.9) is uniformly valid for any compact
set in [0,1) x [0, 1).

More generally, for a fixed integer d~ 0, we set

(2.10)
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and in analogy with (2.4), set

T () Km+d,m(x, y)
m+d,mx,Y :=(1- 2)K ( )'X m+d,m x, X

We shall prove the recursion

LEMMA 2, If d ~ 0, then we have

2m+d(y-X)d
Km+d,m(x, y)=~ 1+ Y Km(x, y)

+(1-X
2
)m(1-X)d 2m +d

4 2 y-X

d (2m+d- j-l) { 2(j-x) }J
XJ~l m+d-j (l+y)(l-x)'

(2.11 )

(2.12)

Proof We begin with the known recursion formula for B-splines and
see that if p > m, we have

m + p {y - x x + 1 p p}
Kpm(x,y)= 1 -l-Kp-lm(x,y)+-l-M(x!(-l) ,1 ).

, m+ p- +y' + Y

Since

_ p m _ (p+m-l)(l+X)m-l(l-XY~l
M(xl( 1),1 )-p m-1 2m+p-1'

we get for any integer s, 1::::; s ::::; p - m,

p+m (Y_X)S
Kp,m(x, y)= p+m-s 1+ Y Kp_s,m(x, y)

+(l-X)p(~)mp+m
2 2 y-X

x I (p+m- j-1) { 2(y-x) }J.
J~l p-j (l+y)(l-x)

Formula (2.12) follows from the above when p = m +d and s= d.
We are interested in expressing Tm+d,m(x, y) in terms of T 00 (x, y) as in

Lemma 1. This is done in
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LEMMA 3. We have

T co (x, y) - Tm+d,m(x, y)

=_1 { y-X }d (X_y)2 +O(m-2). 13)2m (1 + y)(1- x) (1- xy)3

Proof From (2.12), putting x = y, we obtain

1(1_X2)m~1(1_X\d (2rn+d-2)
Km+d,m(x, x) =2" -4- --2-) (2m +d) m+d-l (2.14)

and using (2.3), we also have

K rn + d,m(X, x)

= Km(x)' (l-X)d 2m +d(2m +d- 2)/(2m -2).
2 2m m+d-l m-l

From the above, an easy computation shows that

Since for 1~ j ~ d, we have

( 2m + d - j ~ 1)/(2m +d- 2)=~ (1 +0(2-)), (2.16)
m + d - ) m + d - 1 2) 1 m

it follows from (2.12) on dividing both sides by (1 - x 2
) Km+d.m{x, x) and

on using (2.14), (2.15), and (2.16) that

~ tl +:~;-X)r Tm(x, y) (1 + 0 (~))

1 d { y - x }J ( ( 1 ))
+y - x j ~1 (1 + y)(1- x) 1+ 0 m

=[{ y-x }d Tm(x,y)+ l-{(y-X)!(1+Y)(l-x)}dJ
(1 + y)( 1 - x) 1 - xy

which gives (2.13) on recalling (2.9).
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3. INTERPOLATION WITHIN THE SUBSPACE 9'~.

We denote by 9'~=9'~AYb"" Yn) the subspace of 9'M(Y"'" Yn), where
S(x) E 9'~ satisfies

S(v)(l) = 0,

S(v)( -1) = 0,

v = 0, 1,..., m +d - 1,

v=o, 1",., m-1.
(3.1 )

Clearly, dim9'~=L7=lfJi' From (2.10) (or equivalently from (2.12)), we
see that

v = 0, 1,..., m +d - 1,

v=O,l, ...,m-1.

For typographical reasons, we shall denote [Play V by a; and aVlaxv by a~.

Then as a basis for the space 9'~, we take the functions Jj,v(x) defined by

v = 0, 1,..., fJj - 1, j = 1, 2, ..., n. (3.2)

For sufficiently large m, these L7 fJj functions are linearly independent as
will be evident below.

In order to state the result of this section, we use the standard notation
for a Fredholm determinant (see [1]) and define the linear operator

(Hf)(x) = N(x)ID

where D is determinant of order Lf (Xi (= L7= 1 fJJ given by

D '= T ({Xd~l, ..., {Xi}~i)
• 00 { }P { }P .Yl I, ... , Yn n

(3.3)

(3.4 )

Here, {XiYi is an abbreviation for Xi taken (Xi times, and so on. Also, N(x)
is a determinant obtained from D by adjoining to it a first row a and a last
column b where the row a consists of the functions a;jToo(x, Yj), v =
0, 1,..., fJj - 1 and j = 1, 2, ..., n and the element 0; the column b comprises °
and j(v)(xJ, v = 0, 1,..., (Xi - 1, and i = 1, 2,..., I.

Since T 00 (x, y) is an extended totally positive kernel, it follows that
D=lO [1]. From (3.3), it is clear that

We shall now prove

v = 0,1, ..., (Xi-I, i= 1,..., I. (3.5)
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PROPOSITION 1. If Fm(x) = (l-x2 )m(l-X)d f(x) for f sufficiently dif­
ferentiable and if Sm(Fm) E yt satisfies (1.6) and (1.7) (with Fm instead of
j), then

m~ 00

uniformly in - 1 :( x :( 1.

Proof The interpolant Sm has the representation

n f3j-l

(SmFm)(x) = L L dj,:) Jj,v(x, Yj)
j~ 1 v=o

where the dj,:) are determined by the interpolatory conditions

(3,7)

k=O,,,,, lXi-I; i= 1,,,,, /, (3,8)

Using (3,7), we see that the conditions (3,8) are equivalent to the following
system of linear equations

s p)-l

L: L dj,:) 8~i 8;) Tm+d,m(X i , yJ = f(k\x;),
j~ 1 v=o

k=O, 1,,,,, (l,i-1; i= 1, 2,,,,, /, (3,9)

This is easily checked on using (2,1 1) since both Fm and Sm(Fm) satisfy

and

Dividing both sides of (3,7) by (l-x 2 )m(1-x)d and recalling (2,11), we
see that

n p)-l

(l-x 2 )-m(1_x)-d(SmFm)(x) = L L dj;') 8;j Tm+d,m(x, yJ
j-l v~o

Eliminating dj;') from the above and from (3,9), we obtain

where D m is obtained from (304) by using the kernel Tm+d,m(x, y) in place
of Too(x, y) and Nm(x) is obtained from N(x) likewise, The relation (3,6)
now follows by letting m ~ 00 and using Lemma 3,
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Remark. In case 1= n and !Xi = Pi = 2, i = 1,..., n, an explicit expression
for (Hf)(x) can be easily given. Indeed, set

Then

n x-x-
Bn(x):= n -1_J.

j=1 -xYj
(3.10)

n n

(Hj)(x) = L f(xv)hv(x)+ L f'(x v) Hv(x), fEC'[ -1,1] (3.11)

where

v=1 v~1

{
B"(x) }

hv(x)= 1-B~(x:)(x-xv) I;(x)

Hv(x) = (x-x.) I;(x) (3.12)

Bn(x)
Iv(x)=( _ )B'( )' v=1,2,...,n.

x Xv n Xv

Here, hv(x) and Hv(x) are linear combinations of {(l-XYj)-I};~1 and
{(1-xYj)-2};~1 and (Hf)(x) is the linear combination of these 2n
functions which interpolates f in the Hermite sense at the nodes {xv}~ ~ l'

4. PROOF OF THEOREM 1

We can now state more completely

THEOREM 1. Let fEA(D p ), P> 1 and let Sm(X)E9'M(Yl,"" Yn) satisfy
(1.6) and (1.7), where M=2m+d-1. Then

lim IIf - Smfll 1
/
m= lip

m~ 00

Moreover, for any!;,¢ [-1,1], we have

uniformly for X E [ -1, 1], where f~(x) = 1/(!;, - x).

Proof Let (PM f)(x) denote the polynomial of degree M = 2m +d - 1
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which interpolates f and its first m + d - 1 derivatives at 1, while at -1 it
interpolates f and its first m - 1 derivatives. Then

(4.1 )

where r is any contour containing the interior of r l . If ~ ¢ [ -1, 1] then
for f;(x) we have

and

f;(x)-Smf;(x)

1
=f;(x) - (PMf;)(x) - (1- (2)m(1_ Od (SmFm,;)(x) (4.3)

where

Using Proposition 1, we have

To prove the first part of the theorem, suppose f E A(Dp) for some p> 1.
In (4.1), use the contour T p and conclude

(4.4)

uniformly for - 1 :::;; x:::;; 1. Then

f(x) - (Smf)(x)

= f(x) - (Pmf)(x) + (Sm(f - PM»(X)

1 f fez)
=f(x) - (PMf)(X) - 2ni r

p

(1- z2)m(1_ Z)d (Sm Fm,z)(x) dz

where

Fm,Ax) = (1-x2)m(1_X)d/(Z-X).

By (3.6), (SmFm, z)(x) is clearly uniformly bounded only for x E [-1, 1]
and Z E rp , p> 1. This together with (4.4) gives the desired result.
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