Convergence of a Class of Interpolatory Splines for Holomorphic Functions

A. S. CAVARETTA, JR.

Department of Mathematics, Kent State University, Kent, Ohio 44242, U.S.A.

A. Sharma

Department of Mathematics, University of Alberta, Edmonton, Alberta T6G 2H1, Canada

AND

J. TZIMBALARIO

22A Wilcomitch Street, Rehovot, Israel Communicated by Paul G. Nevai

Received July 31, 1984; revised June 26, 1985

DEDICATED TO THE MEMORY OF GÉZA FREUD

1. INTRODUCTION

Let $\Gamma_{\rho} = \{z: |1-z^2| = \rho\}, \rho > 1$, denote a lemniscate containing [-1, 1]and let D_{ρ} denote the interior of Γ_{ρ} . Let $A(D_{\rho})$ denote the class of functions holomorphic in the domain D_{ρ} and let the maximum norm on [-1, 1] be denoted by $\|\cdot\|$. Suppose that $S(x) = (S_{m,n}f)(x)$ denotes the complete spline interpolant of degree 2m-1 to f on [-1, 1] with respect to any given knots $y_1 < y_2 < \cdots < y_n$ in (-1, 1). More precisely, $S(x) \in C^{2m-2}[-1, 1]$, and

$$S(y_{v}) = f(y_{v}), \qquad v = 1, 2, ..., n,$$
 (1.1)

$$S^{(j)}(\pm 1) = f^{(j)}(\pm 1), \qquad j = 0, 1, ..., m - 1.$$
(1.2)

In connection with Professor Schoenberg's 1968 conjecture regarding the convergence of the spline interpolant $(S_{m,n}f)(x)$ as $m \to \infty$, it was recently proved [2] that if $f \in A(D_{\rho})$, $\rho > 1$, then the spline interpolant converges to f geometrically on [-1, 1].

The purpose of this note is to examine the sensitivity of the above results to different types of interpolatory conditions. A close examination of the proof of the result in [2] shows that their result prevails even when their condition is replaced by

$$S(x_v) = f(x_v), \quad v = 1, 2, ..., n,$$

when $-1 < x_1 < \cdots < x_n < 1$ are any *n* distinct points, not necessarily the same as the knots $\{y_i\}_{i=1}^{n}$.

In view of this, we propose to consider the following

PROBLEM. Let $m \ge 1$, $d \ge 0$ be integers and let $\{y_i\}_{i=1}^{n}$

$$-1 < y_1 < y_2 < \dots < y_n < 1 \tag{1.3}$$

be *n* knots. Let $\mathscr{G}_M = \mathscr{G}_M(y_1, ..., y_2)$ denote the class of splines of degree M := 2m + d - 1 with knots $\{y_j\}_1^n$ each taken with multiplicity $\{\beta_j\}_1^n$, $\beta_j \ge 1$. For a given positive integer *l*, let

$$-1 < x_1 < x_2 < \dots < x_l < 1 \tag{1.4}$$

be given, where each x_i is taken with multiplicity $\alpha_i, \alpha_i \ge 1$ (i = 1, ..., l). We require that

$$\sum_{i=1}^{l} \alpha_i = \sum_{i=1}^{n} \beta_i. \tag{1.5}$$

We consider the interpolation problem of finding $S(x) \in \mathcal{G}_M$ satisfying

$$S^{(\nu)}(x_i) = f^{(\nu)}(x_i), \qquad \nu = 0, 1, ..., \alpha_i - 1; i = 1, ..., l.$$
(1.6)

and

$$S^{(\nu)}(1) = f^{(\nu)}(1) \qquad \nu = 0, 1, ..., m + d - 1,$$

$$S^{(\nu)}(-1) = f^{(\nu)}(-1), \qquad \nu = 0, 1, ..., m - 1.$$
(1.7)

The problem is to find the convergence properties of $S(x) \in \mathscr{G}_M$, M = 2m + d - 1, when $m \to \infty$.

Remark. For large enough values of m, the interlacing conditions of Schoenberg and Whitney are satisfied and so the uniqueness and existence of $S(x) \in \mathscr{G}_M$ satisfying (1.6) and (1.7) follows.

We shall prove

THEOREM 1. Let $f \in A(D_{\rho})$, $\rho > 1$ and let $S_m(x) \in \mathscr{G}_M(y_1 \cdots y_n)$ satisfy (1.6) and (1.7), where M = 2m + d - 1. Then

$$\lim_{m\to\infty} \|f-S_mf\|^{1/m} \leqslant 1/\rho.$$

An additional, more precise statement will be given in Section 4.

2. PRELIMINARIES

In order to examine the above problems, we shall recall some of the notations and results of [2]. There, the method was based on the boundary conditions. The main tool in that study was the *B*-spline

$$K_m(x, y) = M(x | (-1)^m, y, 1^m)$$
(2.1)

of degree 2m-1 with a simple knot at y and m-fold knots at ± 1 , normalized to have integral one. We shall need the following recursion formula for $K_m(x, y)$:

$$K_{m}(x, y) = \frac{m}{m-1} \left\{ (m-1) \binom{2m-2}{m-1} \left(\frac{1-x^{2}}{4} \right)^{m-1} \left(\frac{1-xy}{1-y^{2}} \right) - \frac{(x-y)^{2}}{(1-y^{2})} K_{m-1}(x, y) \right\}.$$
(2.2)

In particular,

$$K_m(x) := K_m(x, x) = m \binom{2m-1}{m-1} \left(\frac{1-x^2}{4}\right)^{m-1}$$
(2.3)

Following [2], we set

$$T_m(x, y) = K_m(x, y)/(1 - x^2) K_m(x, x)$$
(2.4)

and

$$T_{\infty}(x, y) = \frac{1}{1 - xy}.$$
 (2.5)

We shall prove the following

LEMMA 1. We have the following identity

$$T_{\infty}(x, y) - T_{m}(x, y) = \frac{1}{2m(1-xy)} \left[\frac{(x-y)^{2}}{(1-xy)^{2}} + 6\rho(1+4\rho)^{1/2} \int_{0}^{1} v^{m}(1+4\rho v)^{-5/2} dv \right]$$
(2.6)

where

$$\rho = \frac{(1-x^2)(1-y^2)}{4(x-y)^2}.$$
(2.7)

Proof. The proof follows from the known relation [2],

$$T_m(x, y) = m\left(1 - \frac{1}{2m}\right) T_{\infty}(x, y)(1 + 4\rho)^{1/2} \int_0^1 v^{m-1} (1 + 4\rho v)^{-1/2} dv,$$

on writing

$$T_{\infty}(x, y) - T_{m}(x, y)$$

$$= mT_{\infty}(x, y) \int_{0}^{1} v^{m-1} \left[\left(1 - \frac{1}{2m} \right) (1 + 4\rho)^{1/2} (1 + 4\rho v)^{-1/2} \right] dv$$

$$= mT_{\infty}(x, y) \left[\int_{0}^{1} v^{m-1} \{ 1 - (1 + 4\rho)^{1/2} (1 + 4\rho v)^{-1/2} \} dv$$

$$= mT_{\infty}(x, y) \left[\int_{0}^{1} v^{m-1} \{ 1 - (1 + 4\rho)^{1/2} (1 + 4\rho v)^{-1/2} \} dv$$

$$+ \frac{1}{2m} \int_{0}^{1} v^{m-1} (1 + 4\rho)^{1/2} (1 + 4\rho v)^{-1/2} dv \right]. \qquad (2.8)$$

Using integration by parts on the first integral and simplifying, we get (2.6).

Remark 2. Formula (2.6) shows that $T_{\infty}(x, y) \ge T_m(x, y)$ and that

$$\frac{1}{1-xy} - T_m(x, y) = \frac{1}{2m} \frac{(x-y)^2}{(1-xy)^3} + O(m^{-2}).$$
(2.9)

From (2.6) and (2.7) we see that (2.9) is uniformly valid for any compact set in $[0, 1) \times [0, 1)$.

More generally, for a fixed integer $d \ge 0$, we set

$$K_{m+d,m}(x, y) := M(x | (-1)^{m+d}, y, 1^m).$$
(2.10)

and in analogy with (2.4), set

$$T_{m+d,m}(x, y) := \frac{K_{m+d,m}(x, y)}{(1-x^2) K_{m+d,m}(x, x)}.$$
(2.11)

We shall prove the recursion

LEMMA 2. If $d \ge 0$, then we have

$$K_{m+d,m}(x, y) = \frac{2m+d}{2m} \left(\frac{y-x}{1+y}\right)^d K_m(x, y) + \left(\frac{1-x^2}{4}\right)^m \left(\frac{1-x}{2}\right)^d \frac{2m+d}{y-x} \times \sum_{j=1}^d \binom{2m+d-j-1}{m+d-j} \left\{\frac{2(j-x)}{(1+y)(1-x)}\right\}^j.$$
 (2.12)

Proof. We begin with the known recursion formula for *B*-splines and see that if p > m, we have

$$K_{p,m}(x, y) = \frac{m+p}{m+p-1} \left\{ \frac{y-x}{1+y} K_{p-1,m}(x, y) + \frac{x+1}{1+y} M(x \mid (-1)^p, 1^p) \right\}.$$

Since

$$M(x|(-1)^{p}, 1^{m}) = p \binom{p+m-1}{m-1} \frac{(1+x)^{m-1}(1-x)^{p-1}}{2^{m+p-1}},$$

we get for any integer s, $1 \leq s \leq p - m$,

$$K_{p,m}(x, y) = \frac{p+m}{p+m-s} \left(\frac{y-x}{1+y}\right)^s K_{p-s,m}(x, y) \\ + \left(\frac{1-x}{2}\right)^p \left(\frac{1+x}{2}\right)^m \frac{p+m}{y-x} \\ \times \sum_{j=1}^s \binom{p+m-j-1}{p-j} \left\{\frac{2(y-x)}{(1+y)(1-x)}\right\}^j.$$

Formula (2.12) follows from the above when p = m + d and s = d.

We are interested in expressing $T_{m+d,m}(x, y)$ in terms of $T_{\infty}(x, y)$ as in Lemma 1. This is done in

LEMMA 3. We have

$$T_{\infty}(x, y) - T_{m+d,m}(x, y) = \frac{1}{2m} \left\{ \frac{y - x}{(1+y)(1-x)} \right\}^{d} \frac{(x-y)^{2}}{(1-xy)^{3}} + O(m^{-2}).$$
(2.13)

Proof. From (2.12), putting x = y, we obtain

$$K_{m+d,m}(x,x) = \frac{1}{2} \left(\frac{1-x^2}{4}\right)^{m-1} \left(\frac{1-x}{2}\right)^d (2m+d) \left(\frac{2m+d-2}{m+d-1}\right) (2.14)$$

and using (2.3), we also have

$$K_{m+d,m}(x, x) = K_m(x) \cdot \left(\frac{1-x}{2}\right)^d \frac{2m+d}{2m} \binom{2m+d-2}{m+d-1} \left| \binom{2m-2}{m-1} \right|.$$

From the above, an easy computation shows that

$$(1-x^2) K_{m+d,m}(x,x) = (1-x^2) K_m(x)(1-x)^d (1+O(1/m)). \quad (2.15)$$

Since for $1 \le j \le d$, we have

$$\binom{2m+d-j-1}{m+d-j} \left| \binom{2m+d-2}{m+d-1} \right| = \frac{1}{2^{j-1}} \left(1 + O\left(\frac{1}{m}\right) \right), \quad (2.16)$$

it follows from (2.12) on dividing both sides by $(1-x^2) K_{m+d,m}(x, x)$ and on using (2.14), (2.15), and (2.16) that

$$\begin{split} T_{m+d,m}(x, y) &= \left\{ \frac{y-x}{(1+y)(1-x)} \right\}^d T_m(x, y) \left(1 + O\left(\frac{1}{m}\right) \right) \\ &+ \frac{1}{y-x} \sum_{j=1}^d \left\{ \frac{y-x}{(1+y)(1-x)} \right\}^j \left(1 + O\left(\frac{1}{m}\right) \right) \\ &= \left[\left\{ \frac{y-x}{(1+y)(1-x)} \right\}^d T_m(x, y) + \frac{1 - \left\{ (y-x)/(1+y)(1-x) \right\}^d}{1-xy} \right] \\ &\times \left(1 + O\left(\frac{1}{m}\right) \right) \\ &= \left[\frac{1}{1-xy} + \left\{ \frac{y-x}{(1+y)(1-x)} \right\}^d \left(T_m(x, y) - T_\infty(x, y) \right) \right] \left(1 + O\left(\frac{1}{m}\right) \right) \end{split}$$

which gives (2.13) on recalling (2.9).

3. INTERPOLATION WITHIN THE SUBSPACE \mathscr{S}_m^0 .

We denote by $\mathscr{S}_{M}^{0} = \mathscr{S}_{M}^{0}(y_{1},...,y_{n})$ the subspace of $\mathscr{S}_{M}(y_{1},...,y_{n})$, where $S(x) \in \mathscr{S}_{M}^{0}$ satisfies

$$S^{(\nu)}(1) = 0, \qquad \nu = 0, 1, ..., m + d - 1,$$

$$S^{(\nu)}(-1) = 0, \qquad \nu = 0, 1, ..., m - 1.$$
(3.1)

Clearly, dim $\mathscr{G}_{M}^{0} = \sum_{i=1}^{n} \beta_{i}$. From (2.10) (or equivalently from (2.12)), we see that

$$\frac{\partial^{v}}{\partial y^{v}} K_{m+d}(x, y) \bigg|_{x=+1} = 0, \qquad v = 0, 1, ..., m+d-1,$$
$$\frac{\partial^{v}}{\partial y^{v}} K_{m+d}(x, y) \bigg|_{x=-1} = 0, \qquad v = 0, 1, ..., m-1.$$

For typographical reasons, we shall denote $\partial^{\nu}/\partial y^{\nu}$ by ∂_{y}^{ν} and $\partial^{\nu}/\partial x^{\nu}$ by ∂_{x}^{ν} . Then as a basis for the space \mathscr{S}_{M}^{0} , we take the functions $J_{i,\nu}(x)$ defined by

$$J_{j,\nu}(x) := \partial_{y_j}^{\nu} K_{m+d,m}(x, y_j), \qquad \nu = 0, 1, ..., \beta_j - 1, j = 1, 2, ..., n.$$
(3.2)

For sufficiently large *m*, these $\sum_{i=1}^{n} \beta_{j}$ functions are linearly independent as will be evident below.

In order to state the result of this section, we use the standard notation for a Fredholm determinant (see [1]) and define the linear operator

$$(Hf)(x) = N(x)/D \tag{3.3}$$

where D is determinant of order $\sum_{i=1}^{d} \alpha_i (= \sum_{i=1}^{n} \beta_i)$ given by

$$D := T_{\infty} \begin{pmatrix} \{x_1\}^{\alpha_1}, ..., \{x_i\}^{\alpha_i} \\ \{y_1\}^{\beta_1}, ..., \{y_n\}^{\beta_n} \end{pmatrix}.$$
 (3.4)

Here, $\{x_i\}^{\alpha_i}$ is an abbreviation for x_i taken α_i times, and so on. Also, N(x) is a determinant obtained from D by adjoining to it a first row a and a last column b where the row a consists of the functions $\partial_{y_j}^v T_{\infty}(x, y_j)$, $v = 0, 1, ..., \beta_j - 1$ and j = 1, 2, ..., n and the element 0; the column b comprises 0 and $f^{(v)}(x_i)$, $v = 0, 1, ..., \alpha_i - 1$, and i = 1, 2, ..., l.

Since $T_{\infty}(x, y)$ is an extended totally positive kernel, it follows that $D \neq 0$ [1]. From (3.3), it is clear that

$$(Hf)^{(\nu)}(x_i) = f^{(\nu)}(x_i), \qquad \nu = 0, 1, ..., \alpha_i - 1, i = 1, ..., l.$$
(3.5)

We shall now prove

PROPOSITION 1. If $F_m(x) = (1 - x^2)^m (1 - x)^d f(x)$ for f sufficiently differentiable and if $S_m(F_m) \in \mathscr{S}^0_M$ satisfies (1.6) and (1.7) (with F_m instead of f), then

$$\lim_{m \to \infty} (1 - x^2)^{-m} (1 - x)^{-d} S_m(F_m)(x) = (Hf)(x)$$
(3.6)

uniformly in $-1 \leq x \leq 1$.

Proof. The interpolant S_m has the representation

$$(S_m F_m)(x) = \sum_{j=1}^n \sum_{\nu=0}^{\beta_j - 1} d_{j\nu}^{(m)} J_{j,\nu}(x, y_j)$$
(3.7)

where the $d_{jv}^{(m)}$ are determined by the interpolatory conditions

$$(\partial_{x_i}^k S_m(F_m))(x_i) = F_m^{(k)}(x_i), \qquad k = 0, ..., \alpha_i - 1; i = 1, ..., l.$$
(3.8)

Using (3.7), we see that the conditions (3.8) are equivalent to the following system of linear equations

$$\sum_{j=1}^{s} \sum_{\nu=0}^{\beta_{j}-1} \tilde{d}_{j\nu}^{(m)} \partial_{x_{i}}^{k} \partial_{y_{j}}^{\nu} T_{m+d,m}(x_{i}, y_{j}) = f^{(k)}(x_{i}),$$

$$k = 0, 1, ..., \alpha_{i} - 1; \quad i = 1, 2, ..., l.$$
(3.9)

This is easily checked on using (2.11) since both F_m and $S_m(F_m)$ satisfy

$$F_m^{(v)}(1) = (S_m F_m)^{(v)}(1) = 0, \quad v = 0, 1, ..., m + d - 1,$$

and

$$F_m^{(\nu)}(-1) = (S_m F_m)^{(\nu)}(-1) = 0, \quad \nu = 0, 1, ..., m-1.$$

Dividing both sides of (3.7) by $(1-x^2)^m(1-x)^d$ and recalling (2.11), we see that

$$(1-x^2)^{-m}(1-x)^{-d}(S_mF_m)(x) = \sum_{j=1}^n \sum_{\nu=0}^{\beta_j-1} \widetilde{d}_{j\nu}^{(m)} \partial_{\nu_j} T_{m+d,m}(x, y_j).$$

Eliminating $\widetilde{d}_{iv}^{(m)}$ from the above and from (3.9), we obtain

$$(1-x^2)^{-m}(1-x)^{-d}(S_m f_m)(x) = N_m(x)/D_m(x)$$

where D_m is obtained from (3.4) by using the kernel $T_{m+d,m}(x, y)$ in place of $T_{\infty}(x, y)$ and $N_m(x)$ is obtained from N(x) likewise. The relation (3.6) now follows by letting $m \to \infty$ and using Lemma 3. *Remark.* In case l=n and $\alpha_i = \beta_i = 2$, i = 1,..., n, an explicit expression for (Hf)(x) can be easily given. Indeed, set

$$B_n(x) := \prod_{j=1}^n \frac{x - x_j}{1 - x y_j}.$$
(3.10)

Then

$$(Hf)(x) = \sum_{\nu=1}^{n} f(x_{\nu}) h_{\nu}(x) + \sum_{\nu=1}^{n} f'(x_{\nu}) H_{\nu}(x), \qquad f \in C'[-1, 1] \quad (3.11)$$

where

$$h_{\nu}(x) = \left\{ 1 - \frac{B_{n}''(x_{\nu})}{B_{n}'(x_{\nu})} (x - x_{\nu}) \right\} l_{\nu}^{2}(x)$$

$$H_{\nu}(x) = (x - x_{\nu}) l_{\nu}^{2}(x)$$

$$l_{\nu}(x) = \frac{B_{n}(x)}{(x - x_{\nu}) B_{n}'(x_{\nu})}, \quad \nu = 1, 2, ..., n.$$
(3.12)

Here, $h_{\nu}(x)$ and $H_{\nu}(x)$ are linear combinations of $\{(1-xy_j)^{-1}\}_{j=1}^n$ and $\{(1-xy_j)^{-2}\}_{j=1}^n$ and (Hf)(x) is the linear combination of these 2*n* functions which interpolates *f* in the Hermite sense at the nodes $\{x_{\nu}\}_{\nu=1}^n$.

4. PROOF OF THEOREM 1

We can now state more completely

THEOREM 1. Let $f \in A(D_{\rho})$, $\rho > 1$ and let $S_m(x) \in \mathscr{G}_M(y_1,...,y_n)$ satisfy (1.6) and (1.7), where M = 2m + d - 1. Then

$$\lim_{m \to \infty} \|f - S_m f\|^{1/m} \leftarrow 1/\rho$$

Moreover, for any $\xi \notin [-1, 1]$, we have

$$\lim_{m \to \infty} \frac{(1-\xi^2)^m (1-\xi)^d}{(1-x^2)^m (1-x)^d} (f_{\xi}(x) - (S_m f_{\xi})(x)) = f_{\xi}(x) - Hf_{\xi}(x)$$

uniformly for $x \in [-1, 1]$, where $f_{\xi}(x) = 1/(\xi - x)$.

Proof. Let $(P_M f)(x)$ denote the polynomial of degree M = 2m + d - 1

which interpolates f and its first m+d-1 derivatives at 1, while at -1 it interpolates f and its first m-1 derivatives. Then

$$f(x) - (P_M f)(x) = \frac{1}{2\pi i} \int_{\Gamma} \frac{(1-x^2)^m (1-x)^d f(z)}{(z-x)(1-z^2)^m (1-z)^d} dz$$
(4.1)

where Γ is any contour containing the interior of Γ_1 . If $\xi \notin [-1, 1]$ then for $f_{\xi}(x)$ we have

$$f_{\xi}(x) - (P_M f_{\xi})(x) = \frac{(1-x^2)^m (1-x)^d}{(\xi-x)(1-\xi^2)^m (1-\xi)^d}$$
(4.2)

and

$$f_{\xi}(x) - S_m f_{\xi}(x) = f_{\xi}(x) - (P_M f_{\xi})(x) - \frac{1}{(1 - \xi^2)^m (1 - \xi)^d} (S_m F_{m,\xi})(x)$$
(4.3)

where

$$F_{m,\xi}(x) = (1-x^2)^m (1-x)^d / (\xi - x).$$

Using Proposition 1, we have

$$\lim_{m \to \infty} \frac{(1-\xi^2)^m (1-\xi)^d}{(1-x^2)^m (1-x)^d} (f_{\xi}(x) - (S_m f_{\xi})(x)) = f_{\xi} - H f_{\xi}(x).$$

To prove the first part of the theorem, suppose $f \in A(D_{\rho})$ for some $\rho > 1$. In (4.1), use the contour Γ_{ρ} and conclude

$$f(x) - (P_M f)(x) = O(\rho^{-m})$$
(4.4)

uniformly for $-1 \le x \le 1$. Then

$$f(x) - (S_m f)(x)$$

= $f(x) - (P_m f)(x) + (S_m (f - P_M))(x)$
= $f(x) - (P_M f)(x) - \frac{1}{2\pi i} \int_{\Gamma_\rho} \frac{f(z)}{(1 - z^2)^m (1 - z)^d} (S_m F_{m,z})(x) dz$

where

$$F_{m,z}(x) = (1-x^2)^m (1-x)^d / (z-x).$$

By (3.6), $(S_m F_m, z)(x)$ is clearly uniformly bounded only for $x \in [-1, 1]$ and $z \in \Gamma_{\rho}$, $\rho > 1$. This together with (4.4) gives the desired result.

CAVARETTA, SHARMA, AND TZIMBALARIO

ACKNOWLEDGMENT

We thank C. A. Micchelli for several helpful conversations which guided our work.

References

- 1. S. KARLIN, "Total Positivity," Stanford Univ. Press, Stanford, Calif., 1968.
- 2. C. A. MICCHELLI AND A. SHARMA, "Convergence of Complete Spline Interpolation for Holomorphic Functions," Arkiv für Mathematik 23 (1), 1985, 159–170.